这是感悟最深的一点。投资人经常问我们竞争对手是谁,或者对标美国哪个公司。过去我们一直说我们对标 Snowflake or Databricks,尤其是 Snowflake 上市后(大部分投资人无法判断技术,所以只能对标知名公司来理解)。而很多时候,客户的领导或者决策者,也往往是靠这样的对比,才能了解我们的能力和应用场景。但深入看一下,就知道我们不一样,更重要的是,中美客户的需求非常不一样。美国市场专业化分工非常细致且完善,ETL 是 ETL,DW 是 DW,BI 是 BI,基本上每个领域都有几个上市公司,大家只要有差异化,基本上都能赚钱,而且卖得不便宜。这就是为什么之前美国市场讲“现代数据栈”/Modern Data Stack 非常有用,一看就知道某个技术属于哪个部分,而且各层之间的接口都相对规范。但显然在国内这个行不通,技术栈的差异非常大还算好,碰到个魔改的环境对接起来苦不堪言,大量人力和时间被浪费掉。而中国客户,往往付一笔钱就想要全部,最近有个头部公司给我们提的需求,涵盖了 OLAP、ETL、联邦查询、实时查询等,但问愿意付多少钱的时候,却表示没多少钱——就如极客公园创始人张鹏之前说的:“客户提的都是登月的需求,但愿意付的只是一个同城快递的钱”——这是现状,我们需要的是去适应,而不是去改变(我们当然想去改变,但教育成本非常大,需要一个渐进的过程),当然我们也不是去妥协,而是要找到平衡。另外,中美客户在人才分布上,也有着巨大的差距。走出金融、通信、头部零售和制造业客户等行业,中国的大部分其他行业客户,都没有成建制的数据仓库或者大数据团队,往往都是手撸代码直接完成各种分析报表和查询,缺乏专业的分析人才和能力。这点对我们在过去几年打开非金融行业确实带来了很大的挑战。去年,有客户突然和我说:用你们的指标平台是不是可以不用先建立数据仓库?回答“是”并验证之后,整个合同和项目流程一下子加速了。据分析报告,中国的云计算大致落后美国 7-8 年,在整个 IT 方面也差不多。所以我们不能把美国市场的成功的架构、产品和工具,直接在中国对标,我们要设计符合中国客户和市场的产品。为客户提供一站式的数据和分析能力,是未来非专业客户的刚需,也是我们跨越鸿沟的核心要点。
人工智能 vs AI
AI 很火,两边都非常火,但火的方向和内容非常不一样。除了大模型本身的卷以外,在 AI 的应用、生态上,两边有着不同的路线。从 Midjourney 和 Pika 等的火爆,可以看到美国市场在不需要特别清晰的盈利模式上做着各种创新,各种 SaaS 化的 AI 应用,甚至这几天的 GPT Store 可以看到几百万的应用在非常短的时间内出现。有非常多有意思、解决小问题的应用出现,甚至很多都能很快有收入(来自良好的付费和订阅习惯)。而国内目前能够看到的 AI 相关的应用和场景,都还非常有限以及原始,大部分能够看到听到的都来自文生图、文生视频等 2C 应用,在工具类、企业服务类,还非常的少。图片来源:ChatGPT 4对比数据分析领域,可以看到美国 ChatGPT 的数据分析插件本身已经做得非常好,丢一个 CSV 就能给出非常好的分析和建议等,且 GPT Store 上也有一大堆的插件,尤其是一些 SaaS 供应商提供的数据应用。而国内大部分都还是 Text2SQL(NL2SQL) 类,接触到非常多的团队都在努力地用 AI 写 SQL - 这当然很重要,但往往受益的依然还是数据工程师、数据分析师,还是“机器人打算盘”的感觉,差了点意思。
管理 vs Operation
数据与分析,从更大范围来说,属于决策支持系统(DSS, Decision Support System),来自维基百科的内容:Beginning in about 1990, data warehousing and on-line analytical processing (OLAP) began broadening the realm of DSS. (Decision support System, Wikipedia)。而决策支持系统,是帮助人类进行决策和管理的软件。但软件仅仅只是工具,是术,这背后更重要的是管理的思想和方法论,这是道和法。而这,才是中美软件(至少是管理软件)最大的差异:不同的人文环境,不同的发展阶段造就了非常不同的管理理念和方法论。不管是生产系统的 ERP,还是销售营销的 CRM,再到基础的人力资源、薪资系统等等,都有着非常大的不同。咨询大咖陈果曾经写文章说过,他工作过的几家外企,人力和薪资软件的基本理念和操作都非常一致,即使是不同供应商提供的。据他总结是因为背后的管理理念一致,似乎更多是按照同一种方法/handbook 来运营组织(Operation)完成工作从而达到目标。类似于一个只要按照飞行手册,经过一定培训的飞行员就能驾驶飞机(下面的手册在美国沃尔玛都可以买到)。图片来自网络反观国内,在几个群里讨论过最多的一个结论就是:几乎每个稍微上点规模的公司都有着定制化 CRM 等各种软件的冲动(但从来不考虑是否要付钱),几乎每个老板、领导都有自己的“方法论”,极难说服他们按某个“理论”行事,而且都有着极强的管理欲望。一个粗浅的理解,是因为西方现代化公司运营已经近百年,大量的实践和长期的积累,已经逐渐形成体系,而且大量的商学院、培训机构、咨询公司等,在过去几十年改造了大量的公司,培养了大量的专业管理人才。久而久之,大家都习惯于使用一个体系的工具和流程来完成同样的工作,所以可以看到美国的软件业非常发达,几乎每一个细分的赛道,都有非常多的上市公司或者独角兽。而国内改革开放也就这几十年,整个社会和经济也还在剧烈的调整和变化中,大量的企业业务虽然非常好,但管理本身,可能并是不特别出众,往往都是“人”的能力更突出。故而对软件本身,背后的管理方法论,以及价值都非常模糊,甚至低估。这也是今天企业服务行业面临的挑战。